Methods for Evaluating Value-at-Risk Estimates
نویسندگان
چکیده
منابع مشابه
conditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Estimation methods for Value at Risk
In the last few decades, risk managers have truly experienced a revolution. The rapid increase in the usage of risk management techniques has spread well beyond derivatives and is totally changing the way institutions approach their financial risk. In response to the financial disasters of the early 1990s a new method called VaR (Value at Risk) was developed as a simple method to quantify marke...
متن کاملWorse fluctuation method for fast Value-at-Risk estimates
We show how one can actually take advantage of the strongly nonGaussian nature of the fluctuations of financial assets to simplify the calculation of the Value-at-Risk of complex non linear portfolios. The resulting equations are not hard to solve numerically, and should allow fast VaR and ∆VaR estimates of large portfolios, where by construction the influence of rare events is taken into accou...
متن کاملEvaluation Approaches of Value at Risk for Tehran Stock Exchange
The purpose of this study is estimation of daily Value at Risk (VaR) for total index of Tehran Stock Exchange using parametric, nonparametric and semi-parametric approaches. Conditional and unconditional coverage backtesting are used for evaluating the accuracy of calculated VaR and also to compare the performance of mentioned approaches. In most cases, based on backtesting statistics Results, ...
متن کاملGenerating Volatility Forecasts from Value at Risk Estimates
Statistical volatility models rely on the assumption that the shape of the conditional distribution is fixed over time and that it is only the volatility that varies. The recently proposed conditional autoregressive value at risk (CAViaR) models require no such assumption, and allow quantiles to be modelled directly in an autoregressive framework. Although useful for risk management, CAViaR mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 1998
ISSN: 1556-5068
DOI: 10.2139/ssrn.1029673